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Abstract

An iterated improved reduced system (IIRS) procedure combined with substructuring scheme for both undamped and

nonclassically damped structures is presented. Iterated IIRS method is an efficient reduction technique because the highly

accurate eigenproperties from the repeatedly updated condensed matrices can be obtained without consuming expensive

computational cost. However, single domain direct approach of this method to large structures requires much

computational resources and even makes analysis intractable in the case only limited computer storage is available. These

problems can be overcome by combining the substructuring scheme with IIRS procedure. The newly developed IIRS

method combined with a substructuring scheme can provide an efficient methodology for large-scale eigenvalue problems.

The validation of the present method and the evaluation of computational efficiency are demonstrated through the

numerical examples.

r 2008 Published by Elsevier Ltd.

1. Introduction

Modern structural dynamics using finite element method requires computational models having a very large
number of degrees of freedom if the structural engineers are to accurately evaluate response of structures
under the detailed models. Eigenvalue problems of such structures need a large amount of computing time.
Although modern supercomputers can solve more than several million degrees of freedom problems, the
analysis cost is very high and they are not easily accessible by most design and analysis engineers who work for
daily design and analysis jobs. Therefore, many researchers have been interested in solving large-scale
eigenvalue problem with limited computer storage and speed. One of the ways to resolve these problems is to
reduce the size of the problem. This way is to truncate the higher modes from the given full system or eliminate
the unimportant degrees of freedom. The researches on constructing reduced models have been proceeded in
the two different ways. One is a reduced-order method, which constructs a reduced system with a few modes
ee front matter r 2008 Published by Elsevier Ltd.
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dominating the response of a structure. The other is a condensation method in which the reduced matrices are
constructed with the master degrees of freedom by transformation matrix. The former has an advantage of
simplicity in constructing reduced system and do not require much computational resources. But the
truncation of higher modes leads to increase the errors of eigenvalues and eigenvectors. On the other hand, the
latter can calculate more accurate eigenproperties than the former but this method requires much computation
cost because of the construction of transformation matrix. Therefore, the condensation method can be
computationally efficient reduction techniques if the transformation matrix is constructed without consuming
much computational cost.

For the last several decades various approximate techniques have been developed to calculate
eigenproperties by the dynamic condensation method. The condensation technique was first proposed by
Guyan [1] and Irons [2] in 1965. These methods involve elimination of the degrees of freedom, which do not
give any significant influence on the solution field. But the accuracy of their methods was very low because the
inertia effects were not considered when constructing the condensation matrices. O’Callahan [3] improved
Guyan’s method by considering the first-order approximation terms in the transformation formula of the slave
degrees of freedom. Although O’Callahan’s method provides a better result than that of Guyan, it may have a
nonpositive definite mass matrix by the wrong selection of the master degrees of freedom. Godis [4] generated
the transformation for the standard IRS (Improved Reduced System) method by using a binomial series
expansion in approximating the eigenvalue term. An iterative dynamic condensation method was proposed by
Suarez and Singh [5]. In this method the eigensolution was obtained using the orthogonality conditions of the
eigenvectors. Friswell et al. [6] proposed an iterated IRS (IIRS) technique, and the convergence of this method
was proved later [7]. Recently, Qu [8] proposed an iterative method for condensation of viscously damped
system. In this method, two governing equations for the dynamic condensation matrix, which relates the
eigenvectors associated with the master and slave degrees of freedom in state space, were derived. Rivera [9]
developed a dynamic condensation approach applicable to nonclassically damped structures as an extension
of undamped systems of Suarez and Singh [5]. Qu [10] proposed an efficient method for dynamic condensation
of nonclassically damped vibration systems. In this paper, a standard subspace iteration method for
undamped models was extended to the nonclassically damped systems. Qu et al. [11,12] proposed various
condensation methods for nonclassically damped systems defined in displacement space and state space.
Recently, Xia and Lin [13] proposed an improved dynamic condensation technique by modifying the iterative
transformation matrix and accelerated the convergence. Through this technique, the more accurate and
efficient lowest eigensolution of structures was obtained in comparison with the IIRS method. Kim and Cho
[15] proposed the two-level condensation scheme for undamped structural system and calculated the
sensitivity from the reduced system. In this scheme the reduced matrices is constructed by the well-selected
primary degrees of freedom through the element level energy estimation [14].

However, although these condensation techniques can reduce the size of the model drastically, it takes a
large amount of computing time for the construction of the reduced system when the problem has a large
number of degrees of freedom over several hundred thousands. One of the ways to overcome this problem is to
apply a substructuring scheme. In static and dynamic problems, if the whole structure can be divided into
substructures, then the problem can be solved more readily with limited memory. Craig and Bampton [16]
employed component mode synthesis for dynamic analysis. In the 1990s, Aminpour et al. [17] performed the
coupled analysis with the independent subdomains by hybrid interface formulation. Bouhaddi and Fillod
[18,19] proposed the dynamic substructuring method using Guyan condensation method based on the
important degrees of freedom in the matching system. Most recently, various efficient model reduction
approaches for large eigenproblems over one million degrees of freedom are proposed, e.g. dual
Craig–Bampton method [20] and automated multilevel substructuring method [21,22]. However these
methods are mode-based reduction methods so that their accuracies are not better than those of the degree-of-
freedom-based reduction methods. Kim and Cho [23] developed three-type subdomain schemes by combining
two-level condensation scheme with substructuring scheme. Their method is degree-of-freedom-based
reduction method (IRS) combined with substructuring scheme.

The objective of this study is to develop an iterated IRS method combined with substructuring scheme. The
iterated IRS method has several merits. Firstly, the iterated IRS method can be applied to nonclassically
damped models as well as to undamped models. Secondly, this method can reduce the eigenvalue analysis
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errors significantly through successive iterations. Thirdly, the analysis results are not sensitive to the selected
master degrees of freedom in the reduced system. The outline of this paper is given as follows. Firstly, iterated
IRS method for a single global system is reviewed briefly. And then the new algorithm of iterated IRS method
combined with substructuring scheme for undamped and nonclassically damped systems is derived,
respectively. After discussion on the convergence of the present method, finally, two numerical examples
are provided to demonstrate the accuracy and efficiency of the present method.

2. Iterated IRS method

Iterated IRS method used in this study is based on Friswell’s method [6,7] for undamped single domain
system and Qu and Rivera’s method [8,10] for nonclassically single structural system. In this section, iterated
IRS schemes for both systems are introduced since they will be combined with the substructuring scheme later.

2.1. Undamped system

The dynamic equilibrium of an n degrees of freedom system can be written in a matrix form as

M €X ðtÞ þ C _X ðtÞ þ KX ðtÞ ¼ fðtÞ (1)

where the mass matrix M, damping matrix C, and stiffness matrix K are assumed to be positive definite,
positive semidefinite, and positive semidefinite, respectively. The corresponding eigenvalue problem of this
system can be expressed in displacement space as

KU ¼MUL (2)

where U is the eigenvector, representing the vibrating mode corresponding to the eigenvalue L. To apply the
dynamic condensation scheme, Eq. (2) can be rewritten in a partitioned form as

Kmm Kms

Ksm Kss

" #
Umm

Usm

( )
¼

Mmm Mms

Msm Mss

" #
Umm

Usm

( )
Lmm (3)

In above equation, the subscript m indicates the master degrees of freedom which are kept in reduced system
and s represents the slave degrees of freedom which should be eliminated. To eliminate the slave degrees of
freedom field, employ the second row of Eq. (3) and rearrange the results yields

Usm ¼ �K
�1
ss KsmUmm þ K�1ss ðMsmUmm þMssUsmÞLmm (4)

According to the definition of the transformation matrix, that is

Usm ¼ tUmm (5)

Substituting Eq. (5) into Eq. (4) and rearranging it for the transformation matrix as

t ¼ �K�1ss Ksm þ K�1ss ðMsm þMsstÞUmmLmmU�1mm (6)

By this transformation matrix, the whole field can be expressed with only master degrees of freedom field as

Umm

Usm

" #
¼

Imm

t

� �
Umm ¼ TUmm (7)

where I is the unit matrix of size m�m. Substituting Eq. (7) into Eq. (3) and premultiplying TT on the left of
this equation, we can obtain the reduced system matrices as

KR ¼ TTKT ¼ TT
Kmm Kms

Ksm Kss

" #
T

MR ¼ TTMT ¼ TT
Mmm Mms

Msm Mss

" #
T (8)
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Through the above-reduced matrices, we can construct a reduced eigenvalue problem of size m�m as

KRUmm ¼MRUmmLmm (9)

From Eq. (9), we get an approximation eigenvalue as

UmmLmmU�1mm ¼M�1R KR (10)

Substituting Eq. (10) into Eq. (6), we get a transformation matrix as

t ¼ �K�1ss Ksm þ K�1ss ðMsm þMsstÞM
�1
R KR (11)

Since this equation is nonlinear, the iterative form of it is given by

tðkÞ ¼ �K�1ss Ksm þ K�1ss Msm þMsst
ðk�1Þ

� �
M
ðk�1Þ
R

� ��1
K
ðk�1Þ
R (12)

Using the above equation, the iterative form of reduced matrices can be constructed as

K
ðkÞ
R ¼ ðT

ðkÞÞ
TKT ¼ ðTðkÞÞT

Kmm Kms

Ksm Kss

" #
TðkÞ

M
ðkÞ
R ¼ ðT

ðkÞÞ
TMT ¼ ðTðkÞÞT

Mmm Mms

Msm Mss

" #
TðkÞ (13)

Therefore, the lowest m eigenvalues and the associated eigenvectors after (k�1)th iteration are estimated by
solving the generalized eigenproblem as

K
ðkÞ
R UðkÞmm ¼M

ðkÞ
R UðkÞmmL

ðkÞ
mm (14)

2.2. Nonclassically damped system

There are lots of situations in which the classical damping assumptions are invalid. Examples of such cases
are the structures made up of materials with different damping characteristics in different parts, structures
equipped with passive and active control system, and structures with layers of damping materials [9,10]. In the
nonclassically damped system, the damping matrix cannot be assumed as a linear combination of mass and
stiffness matrices. To solve a differential equation of motion with a nonclassically damped matrix, the state
vector which is a combination of velocity and displacement vectors should be used to convert second-order
differential equations to the first-order equations. And the solution of such equations results in complex
eigenvalues, eigenvectors, frequencies and damping ratios. Therefore, the Eq. (1) can be converted to

A _Y ðtÞ þ BY ðtÞ ¼ qðtÞ (15)

where the state vector Y(t) and the system matrices which are real and symmetric A and B are defined as

Y ðtÞ ¼
_X ðtÞ

X ðtÞ

( )
; A ¼

K 0

0 �M

� �
; B ¼

�C �M

�M 0

� �
(16)

Thus, by considering Y ðtÞ ¼ ~Ce
~Ot, the eigenvalue problem for nonclassically damped system can be

expressed as

A ~W ¼ B ~W ~X (17)

where the complex conjugate eigenvector matrix ~W and the eigenvalue or spectral matrix ~X has forms as

~W ¼
W W�

WX W�X�

� �
; ~X ¼

X 0

0 X�

� �
(18)

Here the ~X is arranged in an ascending order and the ~W is assumed to be normalized as

~W
T
A ~W ¼ ~X; ~W

T
B ~W ¼ I (19)
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In the dynamic condensation technique, the total degrees of freedom 2n of the full model are usually
divided into the master degrees of freedom 2m, which will be retained in the reduced model, and the slave
degrees of freedom 2s, which will be omitted. Based on this division, Eq. (17) can be rewritten in a partitioned
form as

Amm Ams

Asm Ass

" #
~Wmm

~Wsm

" #
¼

Bmm Bms

Bsm Bss

" #
~Wmm

~Wsm

" #
~Xmm (20)

In Eq. (20), the submatrices are given by

Amm ¼
Kmm 0

0 �Mmm

" #
; Ams ¼

Kms 0

0 �Mms

" #
; Ass ¼

Kss 0

0 �Mss

" #

Bmm ¼
�Cmm �Mmm

�Mmm 0

" #
; Bms ¼

�Cms �Mms

�Mms 0

" #
; Bss ¼

�Css �Mss

�Mss 0

" #

~Wmm ¼

Wmm W�mm

WmmXmm W�mmX�mm

" #
; ~Wsm ¼

Wsm W�sm

WsmXmm W�smX�mm

" #
; ~Xmm ¼

Xmm 0

0 X�mm

" #
(21)

The main procedure of the iterated IRS method for nonclassically damped system is same as the undamped
system except all system matrices are defined in state space. Thus, with the same condensation procedure of
Eqs. (4)–(11), the iterative form of transformation matrix in state space can be constructed as

tðkÞ ¼ �A�1ss Asm þ A�1ss Bsm þ Bsst
ðk�1Þ

� �
B
ðk�1Þ
R

� ��1
A
ðk�1Þ
R (22)

Using Eq. (22), the iterative form of reduced matrices can be constructed as

A
ðkÞ
R ¼ ðT

ðkÞÞ
TAT ¼ ðTðkÞÞT

Amm Ams

Asm Ass

" #
TðkÞ

B
ðkÞ
R ¼ ðT

ðkÞÞ
TBT ¼ ðTðkÞÞT

Bmm Bms

Bsm Bss

" #
TðkÞ (23)

Consequently, the lowest 2m eigenvalues and the associated eigenvectors after (k�1)th iteration are
estimated by solving the generalized eigenproblem in state space of the reduced system as

A
ðkÞ
R
~W
ðkÞ

mm ¼ B
ðkÞ
R
~W
ðkÞ

mm
~X
ðkÞ

mm (24)

3. Selection of master degrees of freedom

In dynamic condensation, how to select the master degrees of freedom may have much effect on the
accuracy of eigenproperties. One of the commonly used criterions is to select the degrees of freedom with the
lowest stiffness to mass ratio that is Kii/Mii in the system matrices. But this method is not reliable because some
missing eigenvalues in the lower eigenmodes may appear when all master degrees of freedom are selected in the
one coordinate direction. The other method is Shah and Raymund’s scheme [24]. Though this scheme provides
better results, it is computationally inefficient. Another method is Cho and Kim’s [14] element-based node
selection method. This method has an advantage of better selection of masters and being computationally
inexpensive. However, it can be applied only for undamped structural system. For nonclassically damped
structural systems, it cannot guarantee the reliability. In this study, node-based arbitrary selection method by
random function generation is used. The reason for this is that the accuracy of the eigensolutions can be
guaranteed by successive iterations in the iterative form of condensation methods.

Moreover, this method not only can provide well-distributed master nodes but also requires no computing
time in selection procedure.
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4. Present method

4.1. Basic idea of a substructuring scheme

The main point of the condensation technique is to eliminate the slave degrees of freedom by over 90% and
construct a reduced system with master degrees of freedom by less than 10% of total degrees of freedom using
transformation matrix. Therefore, the construction of transformation matrix is very important. And whether
the calculation of inverse of the slave degrees of freedom submatrix to build the transformation matrix is
possible or not, is the pivotal point to construct a reduced system. Unfortunately, many condensation
techniques mentioned in the previous section are just for a single domain system and not suitable to be applied
to the practical problems. Therefore, it is the natural extension that substructuring scheme in dynamic
condensation should be combined with these condensation methods.

The basic idea of the substructuring scheme is that if the whole structure can be divided into several (or
more) substructures and the transformation matrices can be constructed in each subsystem, it will be a very
efficient condensation technique. Because the transformation matrix is constructed in each subsystem, the size
of transformation matrix will be reduced to that of each substructure. Thus, the reduced system can be
constructed without much computational cost. Fig. 1 shows the basic schematic of the substructuring
technique. The full system is divided into three kinds of degrees of freedom, i.e. master, slave, and interface
degrees of freedom. The interface degrees of freedom are required to connect each subsystem. Furthermore,
especially for undamped system in displacement space, the further condensation is possible when the size of
retained degrees of freedom is over 10% of the full system or when it is necessary. Through sufficient
iterations, the final reduced matrices can be constructed with the reliable eigenproperties. But this further
condensation procedure is not allowable for nonclassically damped system because the system matrices are
fully populated in state space.
Fig. 1. Basic idea of a substructuring scheme.
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4.2. Formulation of the substructuring scheme

4.2.1. Undamped system

The following formulation is the substructuring scheme for undamped structural system. To employ the
basic substructuring procedure, the single structure of n degrees of freedom of Eq. (1) is divided into two
substructures. And, to apply the dynamic condensation scheme in each substructure, the eigenvalue problem
can also be constructed by the unit of substructure. Thus, the eigenvalue problem for substructure one can be
expressed in a partitioned form as

Kð1Þss Kð1Þsm

Kð1Þms Kð1Þmm

" #
Uð1Þsm

Umm

" #
¼

Mð1Þss Mð1Þsm

Mð1Þms Mð1Þmm

" #
Uð1Þsm

Umm

" #
Lmm (25a)

With the same manner, the eigenproblem for substructure two can also be described as

Kð2Þmm Kð2Þms

Kð2Þsm Kð2Þss

" #
Umm

Uð2Þsm

" #
¼

Mð2Þmm Mð2Þms

Mð2Þsm Mð2Þss

" #
Umm

Uð2Þsm

" #
Lmm (25b)

In Eqs. (25a) and (25b), the system matrices can be assembled into one global system as

Kð1Þss Kð1Þsm

Kð1Þms Kmm Kð2Þms

Kð2Þsm Kð2Þss

2
64

3
75

Uð1Þsm

Umm

Uð2Þsm

2
64

3
75 ¼

Mð1Þss Mð1Þsm

Mð1Þms Mmm Mð2Þms

Mð2Þsm Mð2Þss

2
64

3
75

Uð1Þsm

Umm

Uð2Þsm

2
64

3
75Lmm (26)

where Kmm ¼ Kð1Þmm þ Kð2Þmm and Mmm ¼Mð1Þmm þMð2Þmm including the interface degrees of freedom. To eliminate
the slave degrees of freedom field in each substructure, employ the first and the third rows of Eq. (26) as

Kð1Þss Uð1Þsm þ Kð1ÞsmUmm ¼ Mð1Þss Uð1Þsm þMð1ÞsmUmm

� �
Lmm

Kð2ÞsmUmm þ Kð2Þss Uð2Þsm ¼ Mð2ÞsmUmm þMð2Þss Uð2Þsm

� �
Lmm (27)

Through Eq. (27) the transformation relation of the master degrees of freedom field and the slave degrees of
freedom field in each substructure is obtained. Rearranging Eq. (27) for the slave degrees of freedom field as

Uð1Þsm ¼ � Kð1Þss

� ��1
Kð1ÞsmUmm þ Kð1Þss

� ��1
Mð1ÞsmUmm þMð1Þss Uð1Þsm

� �
Lmm

Uð2Þsm ¼ � Kð2Þss

� ��1
Kð2ÞsmUmm þ Kð2Þss

� ��1
Mð2ÞsmUmm þMð2Þss Uð2Þsm

� �
Lmm (28)

According to the definition of the transformation matrices in each subsystem, that are,

Uð1Þsm ¼ tð1ÞUmm

Uð2Þsm ¼ tð2ÞUmm (29)

Substituting Eq. (29) into Eq. (28) and rearranging them,

tð1Þ ¼ � Kð1Þss

� ��1
Kð1Þsm þ Kð1Þss

� ��1
Mð1Þsm þMð1Þss tð1Þ
� �

UmmLmmU�1mm

tð2Þ ¼ � Kð2Þss

� ��1
Kð2Þsm þ Kð2Þss

� ��1
Mð2Þsm þMð2Þss tð2Þ
� �

UmmLmmU�1mm (30)

From Eq. (30), we get two transformation matrices. By these two transformation matrices, the whole
degrees of freedom field can be reduced to the one with only master degrees of freedom field as

Uð1Þsm

Umm

Uð2Þsm

2
64

3
75 ¼

tð1Þ

Imm

tð2Þ

2
64

3
75Umm ¼ TUmm (31)
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where I is a unit matrix of size m�m and T is a combined form of transformation matrix. Substituting
Eq. (31) into Eq. (26) and premultiplying T

T on the left of the equation, we can obtain the reduced system
matrices as

KR ¼ TTKT ¼ TT

Kð1Þss Kð1Þsm

Kð1Þms Kmm Kð2Þms

Kð2Þsm Kð2Þss

2
664

3
775T

MR ¼ TTMT ¼ TT

Mð1Þss Mð1Þsm

Mð1Þms Mmm Mð2Þms

Mð2Þsm Mð2Þss

2
664

3
775T (32)

From Eq. (32), we can construct a reduced eigenvalue problem of size m�m as

KRUmm ¼MRUmmLmm (33a)

From Eq. (33a), we can obtain the approximate eigenvalue as

UmmLmmU�1mm ¼M�1R KR (33b)

Substituting Eq. (33b) into Eq. (30), we get two transformation matrices for dynamic condensation as

tð1Þ ¼ � Kð1Þss

� ��1
Kð1Þsm þ Kð1Þss

� ��1
Mð1Þsm þMð1Þss tð1Þ
� �

M�1R KR

tð2Þ ¼ � Kð2Þss

� ��1
Kð2Þsm þ Kð2Þss

� ��1
Mð2Þsm þMð2Þss tð2Þ
� �

M�1R KR (34)

Since these equations are nonlinear, the iterative forms of these two governing equations for k ¼ 1,2,3,y,
are given by

t
ðkÞ
ð1Þ ¼ � Kð1Þss

� ��1
Kð1Þsm þ Kð1Þss

� ��1
Mð1Þsm þMð1Þss t

ðk�1Þ
ð1Þ

� �
M
ðk�1Þ
R

� ��1
K
ðk�1Þ
R

t
ðkÞ
ð2Þ ¼ � Kð2Þss

� ��1
Kð2Þsm þ Kð2Þss

� ��1
Mð2Þsm þMð2Þss t

ðk�1Þ
ð2Þ

� �
M
ðk�1Þ
R

� ��1
K
ðk�1Þ
R (35)

However, to obtain the initial approximate eigenvalue in Eq. (33b), the transformation matrices for static
condensation in each substructure should be used. Thus, only the first terms of Eq. (35) are used as

t
ð0Þ
ð1Þ ¼ � Kð1Þss

� ��1
Kð1Þsm

t
ð0Þ
ð2Þ ¼ � Kð2Þss

� ��1
Kð2Þsm

; Tð0Þ ¼

t
ð0Þ
ð1Þ

Imm

t
ð0Þ
ð2Þ

2
664

3
775 (36)

Therefore, the Guyan reduction matrices are obtained as follows:

KGuyan ¼ t
ð0Þ
ð1Þ

� �T
Imm t

ð0Þ
ð2Þ

� �T� � Kð1Þss Kð1Þsm

Kð1Þms Kmm Kð2Þms

Kð2Þsm Kð2Þss

2
664

3
775

t
ð0Þ
ð1Þ

Imm

t
ð0Þ
ð2Þ

2
6664

3
7775

¼ t
ð0Þ
ð1Þ

� �T
Kð1Þss t

ð0Þ
ð1Þ þ Kð1Þmst

ð0Þ
ð1Þ þ t

ð0Þ
ð1Þ

� �T
Kð1Þsm þ Kmm þ t

ð0Þ
ð2Þ

� �T
Kð2Þsm þ Kð2Þmst

ð0Þ
ð2Þ þ t

ð0Þ
ð2Þ

� �T
Kð2Þss t

ð0Þ
ð2Þ (37a)
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MGuyan ¼ t
ð0Þ
ð1Þ

� �T
Imm t

ð0Þ
ð2Þ

� �T� � Mð1Þss Mð1Þsm

Mð1Þms Mmm Mð2Þms

Mð2Þsm Mð2Þss

2
664

3
775

t
ð0Þ
ð1Þ

Imm

t
ð0Þ
ð2Þ

2
6664

3
7775

¼ t
ð0Þ
ð1Þ

� �T
Mð1Þss t

ð0Þ
ð1Þ þMð1Þmst

ð0Þ
ð1Þ þ t

ð0Þ
ð1Þ

� �T
Mð1Þsm þMmm þ t

ð0Þ
ð2Þ

� �T
Mð2Þsm þMð2Þmst

ð0Þ
ð2Þ þ t

ð0Þ
ð2Þ

� �T
Mð2Þss t

ð0Þ
ð2Þ (37b)

As shown Eq. (37), the Guyan reduction matrices are constructed in the substructure level and these reduced
matrices are assembled into global system. For the dynamic condensation, these Guyan reduction matrices
become starting reduced system matrices for iteration as follows

K
ð0Þ
R ¼ KGuyan

M
ð0Þ
R ¼MGuyan (38)

Substituting Eq. (38) into Eq. (34), the initial transformation matrices, i.e. when k ¼ 1, that is 0th iteration,
are given by

t
ð1Þ
ð1Þ ¼ � Kð1Þss

� ��1
Kð1Þsm þ Kð1Þss

� ��1
Mð1Þss t

ð0Þ
ð1Þ þMð1Þsm

� �
M
ð0Þ
R

� ��1
K
ð0Þ
R

t
ð1Þ
ð2Þ ¼ � Kð2Þss

� ��1
Kð2Þsm þ Kð2Þss

� ��1
Mð2Þss t

ð0Þ
ð2Þ þMð2Þsm

� �
M
ð0Þ
R

� ��1
K
ð0Þ
R

; Tð1Þ ¼

t
ð1Þ
ð1Þ

Imm

t
ð1Þ
ð2Þ

2
664

3
775 (39)

Using Eq. (39), the reduced system matrices can be constructed as

K
ð1Þ
R ¼ t

ð1Þ
ð1Þ

� �T
I t

ð1Þ
ð2Þ

� �T� � Kð1Þss Kð1Þsm

Kð1Þms Kmm Kð2Þms

Kð2Þsm Kð2Þss

2
664

3
775

t
ð1Þ
ð1Þ

I

t
ð1Þ
ð2Þ

2
6664

3
7775

¼ t
ð1Þ
ð1Þ

� �T
Kð1Þss t

ð1Þ
ð1Þ þ Kð1Þmst

ð1Þ
ð1Þ þ t

ð1Þ
ð1Þ

� �T
Kð1Þsm þ Kmm þ t

ð1Þ
ð2Þ

� �T
Kð2Þsm þ Kð2Þmst

ð1Þ
ð2Þ þ t

ð1Þ
ð2Þ

� �T
Kð2Þss t

ð1Þ
ð2Þ (40a)

M
ð1Þ
R ¼ t

ð1Þ
ð1Þ

� �T
I t

ð1Þ
ð2Þ

� �T� � Mð1Þss Mð1Þsm

Mð1Þms Mmm Mð2Þms

Mð2Þsm Mð2Þss

2
664

3
775

t
ð1Þ
ð1Þ

I

t
ð1Þ
ð2Þ

2
6664

3
7775

¼ t
ð1Þ
ð1Þ

� �T
Mð1Þss t

ð1Þ
ð1Þ þMð1Þmst

ð1Þ
ð1Þ þ t

ð1Þ
ð1Þ

� �T
Mð1Þsm þMmm þ t

ð1Þ
ð2Þ

� �T
Mð2Þsm þMð2Þmst

ð1Þ
ð2Þ þ t

ð1Þ
ð2Þ

� �T
Mð2Þss t

ð1Þ
ð2Þ (40b)

From Eq. (40), it is clear that the reduced system matrices are also constructed by the unit of subsystem and
combined into whole system.

For the first iteration, i.e. when k ¼ 2, the reduced matrices K
ð1Þ
R ;M

ð1Þ
R and the transformation

matrices t
ð1Þ
ð1Þ; t

ð1Þ
ð2Þ obtained in the previous step are used in the next construction of transformation matrices as

t
ð2Þ
ð1Þ ¼ � Kð1Þss

� ��1
Kð1Þsm þ Kð1Þss

� ��1
Mð1Þss t

ð1Þ
ð1Þ þMð1Þsm

� �
M
ð1Þ
R

� ��1
K
ð1Þ
R

t
ð2Þ
ð2Þ ¼ � Kð2Þss

� ��1
Kð2Þsm þ Kð2Þss

� ��1
Mð2Þss t

ð1Þ
ð2Þ þMð2Þsm

� �
M
ð1Þ
R

� ��1
K
ð1Þ
R (41)

With Eq. (41), the system-reduced matrices of the first iteration are given by

K
ð2Þ
R ¼ T

ð2Þ
ð1Þ

� �T
Kð1Þss t

ð2Þ
ð1Þ þ Kð1Þmst

ð2Þ
ð1Þ þ t

ð2Þ
ð1Þ

� �T
Kð1Þsm þ Kmm þ t

ð2Þ
ð2Þ

� �T
Kð2Þsm þ Kð2Þmst

ð2Þ
ð2Þ þ t

ð2Þ
ð2Þ

� �T
Kð2Þss t

ð2Þ
ð2Þ

M
ð2Þ
R ¼ T

ð2Þ
ð1Þ

� �T
Mð1Þss t

ð2Þ
ð1Þ þMð1Þmst

ð2Þ
ð1Þ þ t

ð2Þ
ð1Þ

� �T
Mð1Þsm þMmm þ t

ð2Þ
ð2Þ

� �T
Mð2Þsm þMð2Þmst

ð2Þ
ð2Þ þ t

ð2Þ
ð2Þ

� �T
Mð2Þss t

ð2Þ
ð2Þ (42)
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Through Eq. (42), the first iterated reduced system matrices are obtained. By these procedures, the iterative
form of transformation matrix and reduced matrices are expressed as

TðkÞ ¼

t
ðkÞ
ð1Þ

Imm

t
ðkÞ
ð2Þ

2
664

3
775 (43a)

K
ðkÞ
R ¼ ðT

ðkÞÞ
TKTðkÞ ¼ ðTðkÞÞT

Kð1Þss Kð1Þsm

Kð1Þms Kmm Kð2Þms

Kð2Þsm Kð2Þss

2
664

3
775TðkÞ

M
ðkÞ
R ¼ ðT

ðkÞÞ
TMTðkÞ ¼ ðTðkÞÞT

Mð1Þss Mð1Þsm

Mð1Þms Mmm Mð2Þms

Mð2Þsm Mð2Þss

2
664

3
775TðkÞ (43b)

Finally, the lowest m eigenvalues and the associated eigenvectors after (k�1)th iteration are estimated by
solving the generalized eigenproblem of the reduced system as

K
ðkÞ
R UðkÞmm ¼M

ðkÞ
R UðkÞmmL

ðkÞ
mm (44)
4.2.2. Nonclassically damped system

As mentioned in Section 2.2, the main procedure of the substructuring scheme for undamped structural
system can also be applied to the formulation for nonclassically damped system. However, the size of all
system matrices becomes doubled. With the same procedure in the previous section, the eigenvalue problem
for two substructures can be expressed in a partitioned form in state space as

Að1Þss Að1Þsm

Að1Þms Að1Þmm

2
4

3
5 ~W

ð1Þ

sm

~Wmm

2
4

3
5 ¼ Bð1Þss Bð1Þsm

Bð1Þms Bð1Þmm

2
4

3
5 ~W

ð1Þ

sm

~Wmm

2
4

3
5 ~Xmm

Að2Þmm Að2Þms

Að2Þsm Að2Þss

2
4

3
5 ~Wmm

~W
ð2Þ

sm

2
4

3
5 ¼ Bð2Þmm Bð2Þms

Bð2Þsm Bð2Þss

2
4

3
5 ~Wmm

~W
ð2Þ

sm

2
4

3
5 ~Xmm (45)

Returning to Eq. (26), the assembled form of nonclassically damped system matrix can be expressed as

Að1Þss Að1Þsm

Að1Þms Amm Að2Þms

Að2Þsm Að2Þss

2
664

3
775

~W
ð1Þ

sm

~Wmm

~W
ð2Þ

sm

2
664

3
775 ¼

Bð1Þss Bð1Þsm

Bð1Þms Bmm Bð2Þms

Bð2Þsm Bð2Þss

2
64

3
75

~W
ð1Þ

sm

~Wmm

~W
ð2Þ

sm

2
664

3
775 ~Xmm (46)

In which Amm ¼ Að1Þmm þ Að2Þmm and Bmm ¼ Bð1Þmm þ Bð2Þmm. Through Eqs. (27)–(34), the iterative forms two
transformation matrices of the nonclassically damped system for k ¼ 1,2,3,y, are given by

t
ðkÞ
ð1Þ ¼ � Að1Þss

� ��1
Að1Þsm þ Að1Þss

� ��1
Bð1Þsm þ Bð1Þss t

ðk�1Þ
ð1Þ

� �
B
ðk�1Þ
R

� ��1
A
ðk�1Þ
R

t
ðkÞ
ð2Þ ¼ � Að2Þss

� ��1
Að2Þsm þ Að2Þss

� ��1
Bð2Þsm þ Bð2Þss t

ðk�1Þ
ð2Þ

� �
B
ðk�1Þ
R

� ��1
A
ðk�1Þ
R (47)
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And through Eqs. (36)–(42), the iterative form of transformation matrix and reduced matrices are
expressed as

TðkÞ ¼

t
ðkÞ
ð1Þ

Imm

t
ðkÞ
ð2Þ

2
664

3
775 (48a)

A
ðkÞ
R ¼ ðT

ðkÞÞ
TATðkÞ ¼ ðTðkÞÞT

Að1Þss Að1Þsm

Að1Þms Amm Að2Þms

Að2Þsm Að2Þss

2
6664

3
7775TðkÞ

B
ðkÞ
R ¼ ðT

ðkÞÞ
TBTðkÞ ¼ ðTðkÞÞT

Bð1Þss Bð1Þsm

Bð1Þms Bmm Bð2Þms

Bð2Þsm Bð2Þss

2
664

3
775TðkÞ (48b)

Finally, the lowest 2m eigenvalues and the associated eigenvectors after (k�1)th iteration are estimated by
solving the generalized eigenproblem of the reduced system as

A
ðkÞ
R
~W
ðkÞ

mm ¼ B
ðkÞ
R
~W
ðkÞ

mm
~X
ðkÞ

mm (49)

And the solution of this eigenproblem results in the complex eigenproperties.
4.3. Further condensation only for undamped system

In dynamic condensation for undamped structure, further condensation is possible. The reason
for the further condensation is that the unnecessary degrees of freedom exist in interfaces connecting
each substructure. These degrees of freedom do not have significant effect on the accuracy of eigenpro-
perties of condensation matrices. Thus these slave interface degrees of freedom can be eliminated
by the further condensation. The procedure for this is identical to the steps for iterative IRS method.
At this time the slave degrees of freedom in interface become the slave degrees of freedom. Through
this further condensation the reduced matrices less than 10% of the full system can be constructed.
After sufficient iterations the reliable eigenproperties can be obtained. But this is only for undamped system
and the accuracy of the further condensation matrices cannot be higher than the results in the first
condensation.

From Eq. (44), the reduced matrices K and M can be partitioned into the master and slave degrees of
freedom again as

Kmm KmiðsÞ

KiðsÞm KiðsÞiðsÞ

" #
Umm

UiðsÞm

( )
ð1Þþð2Þ

¼
Mmm MmiðsÞ

MiðsÞm MiðsÞiðsÞ

" #
Umm

UiðsÞm

( )
Lmm (50)

In Eq. (50), the subscript i(s) indicates the slave degrees of freedom of interfaces. The iterative form of
transformation matrix is

t
ðkÞ
ð1Þþð2Þ ¼ �K

�1
iðsÞiðsÞKiðsÞm þ K�1iðsÞiðsÞ MiðsÞm þMiðsÞiðsÞt

ðk�1Þ
ð1Þþð2Þ

� �
M
ðk�1Þ
R

� ��1
K
ðk�1Þ
R (51)
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From Eq. (51), the iterative form of further reduced matrices can be constructed as

K
ðkÞ
RR ¼ T

ðkÞ
ð1Þþð2Þ

� �T
KRT

ðkÞ
ð1Þþð2Þ ¼ T

ðkÞ
ð1Þþð2Þ

� �T KRmm
KRms

KRsm
KRss

" #
T
ðkÞ
ð1Þþð2Þ

M
ðkÞ
RR ¼ T

ðkÞ
ð1Þþð2Þ

� �T
MRT

ðkÞ
ð1Þþð2Þ ¼ T

ðkÞ
ð1Þþð2Þ

� �T MRmm
MRms

MRsm
MRss

" #
T
ðkÞ
ð1Þþð2Þ (52)

4.4. Procedure for substructuring scheme

The main steps for the (k�1)th iterative substructuring reduction for two structural systems are as follows:
(1)
Fig.

r ¼
Separate the finite element model into two (or more) substructures.

(2)
 Choose the master degrees of freedom using the node-based arbitrary selection method including interface

degrees of freedom in each substructure and compute all the submatrices to be used in the following.

(3)
 Construct the Guyan reduction matrices in each substructure and assemble them into one by using

Eqs. (36) and (37a), (37b).
(4)
 Calculate the approximate eigenvalueðM
ðk�1Þ
R Þ

�1K
ðk�1Þ
R by using Eq. (33b) and for nonclassically damped

system, the approximate eigenvalue is ðB
ðk�1Þ
R Þ

�1A
ðk�1Þ
R .
(5)
 Construct the transformation matrices in each substructure using Eq. (39).

(6)
 Construct the reduced system matrices by using Eqs. (40a) and (40b).

(7)
 Solve for the eigenproblem of the reduced system by using Eq. (44).

(8)
 Check the convergence by using the following convergent criterion:

LðkÞi � Lðk�1Þi

��� ���
LðkÞi

��� ��� p�1ðundampedÞ;
~O
ðkÞ

i �
~O
ðk�1Þ

i

��� ���
~O
ðkÞ

i

��� ��� p�2ðnonclassically dampedÞ; i ¼ 1; 2; . . . ;m (53)

where e1 and e2 represents the relative errors.

(9)
 If m eigenvalues converge, exit the iteration steps. If not converged, update the transformation matrices

and approximate eigenvalue using Eqs. (39) and (40), and repeat steps (4)–(7) until the convergent criterion
is satisfied.
5. Discussion on the convergence

The two substructuring schemes derived in Section 4 are exactly the same as the IIRS method of Friswell [6]
and Qu [8], respectively. This implies that the eigenvalues and eigenvectors of the substructuring reduction
scheme are the same as the eigensolutions obtained from the single domain reduction method if the selected
master degrees of freedom are identical. Since the transformation matrix is the relation between the master
and the slave degrees of freedom, the information of the slave degrees of freedom in each substructure can be
transferred to the global master degrees of freedom. Thus, the present substructuring scheme can be identical
to the previous iterated IRS methods of Section 2. Fig. 2 shows the simple cantilever beam structure and the
2. A simple cantilever beam and the selection of master degrees of freedom in full domain and in each substructure (E ¼ 4MPa,

2800 kg/m3, n ¼ 0.3). (a) Full domain and (b) two-substructures.
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Fig. 3. Comparison of eigenvalues from the single reduced system and substructuring. (a) 0th iteration and (b) 10th iteration.
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same selection of master degrees of freedom in full domain and in two substructures. The results of Fig. 3
show that the eigenvalues calculated from the two methods are exactly same. The present substructuring
reduction scheme is also applicable to nonclassically damped system in the same manner. A proof that the
reduced model reproduces the lower eigenproperties of the full system is given in the Appendix.

6. Numerical examples

To illustrate the convergence and effectiveness of the proposed method, numerical examples for
both systems are considered. In the examples, the ‘‘converge’’ implies that the eigenproperties calculated
from the reduced system are approaching to those obtained from the global system. Therefore, the
absolute relative error of modal frequency both in undamped system and in nonclassically damped system is
defined as

relative error : �o ¼
oreduced � ofullj j

ofull
� 100 (54)

In Eq. (54), ofull, and oreduced are the modal frequencies calculated from global system and reduced system,
respectively.

Especially for nonclassically damped systems, there are a few things to be considered. First, it needs to
assume that the damping matrices in different parts are proportional to their corresponding stiffness matrices
using different proportionality constants. At this time, the proportionality constants are selected properly at
each part. If the proportionality constants are chosen improperly, the modes become overdamped, i.e., the
corresponding eigenvalues have zero imaginary parts. In this case the present method cannot be applied
because the eigenvalues calculated from reduced matrix are not converged to those of the global system. Thus,
it is necessary to check the damping ratio of the system before. The damping matrices are constructed as
follows:

Ci ¼ gi � Ki; i ¼ 1; 2; 3; . . . ;N ðno sum on iÞ (55)

In Eq. (55), Ci, Ki and gi are the damping, stiffness matrix, and proportionality constant of ith substructure,
respectively. Because all eigenvalues are in complex conjugate pairs, only one value of each pair is considered.
The eigenvalue corresponding to the ith mode is denoted as

~Oii ¼ �xioi � ioDi (56)
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And the equivalent natural frequency (oi), damping natural frequency (oDi), and damping ratio (xi) can be
obtained as follows:

oi ¼ ~Oi

�� ��; oDi ¼ oi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2i Þ

q
; xi ¼

�realð ~OiÞ

~Oi

�� �� (57)

Thus, the absolute relative error of damping ratio for each mode can be defined as

relative error : �x ¼
xreduced � xfull
�� ��

xfull
� 100 (58)
Table 1

Comparison of the number of dof in the full system and in the subsystem and the size of transformation matrix of the camshaft model

Total dof Master dof Slave dof Interface dof Transformation matrix

Full system 22,323 1053 21,270 0 [21,270� 1053]

Subsystem

Sub-1 3318 30 3063 225 [3318� 1053]

Sub-2 3747 30 3402 315 [3747� 1053]

Sub-3 5130 45 4767 318 [5130� 1053]

Sub-4 4077 30 3729 318 [4077� 1053]

Sub-5 3495 30 3150 315 [3495� 1053]

Sub-6 3414 30 3159 225 [3414� 1053]

Fig. 4. Finite element model of the camshaft and the selection of master dofs in each substructure (E ¼ 83MPa, r ¼ 7000 kg/m3, n ¼ 0.3).

(a) Finite element model of the camshaft, (b) master dofs in the first reduced system and (c) master dofs in the second reduced system.
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Table 2

First 20 modal frequencies of the camshaft model in the first condensation step

Iteration/mode Frequency (rad/s)

1 2 3 4 5 6 7 8 9 10

0 408.7680 413.7540 653.8955 896.6588 1167.9451 1271.5427 1393.3177 1518.5835 1520.0756 1829.9331

1 413.7540 653.8955 896.6588 1167.9451 1271.5427 1518.5835 1520.0756 1829.9330

2 1271.5427

Exact 408.7684 413.7536 653.8955 896.6588 1167.9452 1271.5421 1393.3177 1518.6029 1520.0560 1829.9330

11 12 13 14 15 16 17 18 19 20

0 2107.4253 2710.7123 3141.5663 3532.1674 3973.4039 4308.7223 4344.7276 4377.8047 4462.2191 5365.4190

1 2107.4252 2710.7117 3141.5647 3532.1633 3973.4011 4308.7090 4344.7178 4377.7835 4462.2043 5365.2495

2 3141.5646 3532.1626 3973.4010 4308.7076 4344.7177 4377.7808 4462.2040 5365.2474

Exact 2107.4251 2710.7117 3141.5643 3532.1622 3973.4005 4308.7119 4344.7156 4377.7740 4462.1998 5365.2131

Table 3

Percent errors in modal frequencies in the first condensation step

Iteration/mode Percent error

1 2 3 4 5 6 7 8 9 10

0 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0013 0.0013 0.0000

1 0.0013 0.0013

2 0.0013 0.0013

11 12 13 14 15 16 17 18 19 20

0 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0003 0.0007 0.0005 0.0038

1 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0001 0.0007

2 0.0001 0.0001 0.0002 0.0001 0.0006

Table 4

First 20 modal frequencies of the camshaft model in the second condensation step

Iteration/mode Frequency (rad/s)

1 2 3 4 5 6 7 8 9 10

0 408.7680 413.7540 653.8955 896.6588 1167.9452 1271.5427 1393.3177 1518.5836 1520.0757 1829.9331

1 413.7540 653.8955 896.6588 1167.9451 1271.5427 1518.5835 1520.0756 1829.9331

2 1167.9451 1271.5427 1518.5835 1520.0756 1829.9331

Exact 408.7684 413.7536 653.8955 896.6588 1167.9452 1271.5421 1393.3177 1518.6029 1520.0560 1829.9330

11 12 13 14 15 16 17 18 19 20

0 2107.4259 2710.7132 3141.5716 3532.2235 3973.4351 4308.7358 4344.7636 4377.8208 4462.2348 5365.4726

1 2107.4254 2710.7122 3141.5663 3532.1850 3973.4116 4308.7175 4344.7313 4377.7953 4462.2108 5365.3076

2 2107.4253 2710.7120 3141.5657 3532.1787 3973.4073 4308.7139 4344.7262 4377.7904 4462.2078 5365.2811

Exact 2107.4251 2710.7117 3141.5643 3532.1622 3973.4005 4308.7119 4344.7156 4377.7740 4462.1988 5365.2131
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6.1. Undamped system—camshaft

A camshaft model using tetrahedron element is shown in Fig. 4(a). The camshaft is constrained at both end
sides and it contains a total of 7441 nodes, 34,095 elements, and 22,323 degrees of freedom. To apply the



ARTICLE IN PRESS

Table 5

Percent errors in modal frequencies in the second condensation step

Iteration/mode Percent error

1 2 3 4 5 6 7 8 9 10

0 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0013 0.0013 0.0000

1 0.0013 0.0013

2 0.0013 0.0013

11 12 13 14 15 16 17 18 19 20

0 0.0000 0.0001 0.0002 0.0017 0.0009 0.0006 0.0011 0.0011 0.0008 0.0048

1 0.0000 0.0001 0.0006 0.0003 0.0001 0.0004 0.0005 0.0003 0.0018

2 0.0000 0.0005 0.0002 0.0000 0.0002 0.0004 0.0002 0.0013

Fig. 5. Finite element model of the aircraft wing and the selection of master dofs in each substructure (E ¼ 72GPa, r ¼ 2800 kg/m3,

n ¼ 0.3). (a) Finite element model of the aircraft wing, (b) material properties in each part (rib, spar) and (c) master degrees of freedom in

each substructure.
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substructuring technique to the camshaft model, the whole system is divided into six substructures. As shown
in Fig. 4(b) the total amount of 1053 arbitrary degrees of freedom is selected as the master degrees of freedom
including the interface degrees of freedom. The final reduced system is just 4.7% of the global system. Table 1
shows the number of degrees of freedom and the size of transformation matrices in the full system and in each
subsystem. It can clearly be seen that the size of the full system has reduced to the size of each subsystem.
Table 2 shows the first 20 modal frequencies calculated from the reduced system in the first condensation step.
The modal frequencies converge to the global ones as the iteration continues. Table 3 shows the percent error
of modal frequencies. The highly accurate modal frequencies with the relative errors within 0.0013% are
obtained.

Fig. 2(c) shows the results of selection of the master degrees of freedom in further condensation step.
The total amount of 526 arbitrary degrees of freedom is selected as the master degrees of freedom. Thus,
the reducing ratio is 2.4% of the full system. Tables 4 and 5 represent the first 20 modal frequencies
of the second reduced matrices and percent errors, respectively. Reliable modal frequencies within the
required error bound are also obtained. A little lower values in errors show in comparison with the ones in the
first step.
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Table 6

Comparison of the number of dof in the full system and in the subsystem and the size of transformation matrix of the aircraft wing model

(in state space)

Total dof Master dof Slave dof Interface dof Transformation matrix

Full system 5040 420 4620 0 [4620� 420]

Subsystem

Sub-1 2664 48 2364 252 [2664� 420]

Sub-2 2628 120 2256 252 [2628� 420]

Table 7

First 20 modal frequencies and damping ratios of the aircraft wing model

Iteration/mode Frequency (rad/s)

1 2 3 4 5 6 7 8 9 10

0 11.9917 25.3007 26.7524 27.8205 33.6815 38.3294 39.0463 40.0256 40.6790 41.9520

1 11.9833 25.2715 26.7088 27.5503 33.3124 37.4382 38.1365 39.1713 39.7569 40.8115

2 11.9834 25.2766 26.7083 27.5435 33.3058 37.3605 38.0422 39.1306 39.6898 40.6950

3 11.9833 25.2712 26.7082 27.5433 33.3056 37.3577 38.0383 39.1283 39.6858 40.6916

5 11.9832 25.2721 26.7093 27.5433 33.3056 37.3562 38.0361 39.1268 39.6837 40.6887

10 11.9832 25.2712 26.7081 27.5432 33.3054 37.3546 38.0337 39.1257 39.6820 40.6860

Exact 11.9832 25.2712 26.7081 27.5429 33.3052 37.3498 38.0276 39.1230 39.6778 40.6764

11 12 13 14 15 16 17 18 19 20

0 44.9422 48.2925 55.9675 57.3443 59.3721 59.6982 60.7474 61.0709 61.3717 63.4285

1 43.0959 44.3769 51.2293 52.5587 53.9274 54.7265 54.9337 55.2709 56.3579 57.2858

2 42.5990 44.3442 51.0749 51.4761 52.3348 53.6590 54.2972 54.5334 54.8832 55.6032

3 42.6746 44.3413 51.0649 51.2056 52.3191 53.6383 53.8604 54.5010 54.8483 55.5078

5 42.8580 44.3430 51.0603 51.1585 52.3142 53.6217 53.6671 54.4802 54.8320 55.4762

10 42.6488 44.3396 51.0555 51.1199 52.3083 53.4850 53.6264 54.4585 54.8141 55.4425

Exact 42.6279 44.3377 50.9847 51.0471 52.2925 53.1754 53.6073 54.4202 54.7762 55.3381

Damping ratio (� 10�5)

1 2 3 4 5 6 7 8 9 10

0 0.6234 1.3900 1.5102 1.6038 1.9888 2.0846 2.1804 2.2995 2.3897 2.5307

1 0.6532 1.2794 1.5829 1.6509 1.9776 2.0715 2.1631 2.1865 2.3033 2.4126

2 0.1683 2.7050 4.3951 1.6129 1.9648 2.0360 2.0796 2.2187 2.2747 2.3886

3 0.7351 1.5369 1.4723 1.5908 1.9468 2.0122 2.1511 2.2566 2.2768 2.4598

5 0.6270 2.0031 3.8570 1.5945 1.9484 1.9891 2.0835 2.2559 2.3415 2.3741

10 0.5845 1.3824 1.5011 1.5968 1.9592 2.0269 2.0887 2.2165 2.2820 2.4237

Exact 0.6229 1.3889 1.5092 1.5939 1.9601 2.0324 2.1163 2.2488 2.2930 2.4472

11 12 13 14 15 16 17 18 19 20

0 2.4418 2.7501 3.2236 3.1540 3.0792 3.1201 3.1581 3.1493 3.2995 3.5237

1 2.4910 2.3739 2.9944 2.8540 2.8577 2.8903 2.9817 2.8495 2.9753 2.1029

2 2.8632 2.6109 2.9509 1.9461 2.8425 2.8061 0.7996 2.7475 2.6590 2.4417

3 2.2776 2.3944 2.9105 1.8919 2.9019 2.7964 0.8579 2.7311 2.6728 2.4260

5 2.2745 2.2883 2.9616 1.9467 2.7903 2.4640 1.4078 2.7507 2.7028 2.4462

10 2.4242 2.3984 2.9419 2.0581 2.8419 1.2937 2.8278 2.7520 2.7286 2.5096

Exact 2.4548 2.4019 2.7409 2.9710 2.8607 2.7039 2.8517 2.8228 2.8199 2.8912
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Table 8

Percent errors in modal frequencies of the aircraft wing model

Iteration/mode Percent error

1 2 3 4 5 6 7 8 9 10

0 0.0709 0.1166 0.1656 0.9979 1.1171 2.5558 2.6090 2.2550 2.4612 3.0406

1 0.0001 0.0010 0.0029 0.0267 0.0216 0.2361 0.2857 0.1232 0.1989 0.3310

2 0.0012 0.0214 0.0009 0.0023 0.0018 0.0285 0.0386 0.0194 0.0300 0.0457

3 0.0002 0.0001 0.0004 0.0016 0.0012 0.0210 0.0282 0.0134 0.0201 0.0373

5 0.0000 0.0033 0.0047 0.0013 0.0011 0.0172 0.0225 0.0096 0.0149 0.0302

10 0.0001 0.0002 0.0002 0.0009 0.0007 0.0129 0.0160 0.0069 0.0104 0.0235

11 12 13 14 15 16 17 18 19 20

0 5.1494 8.1893 8.9030 10.9814 11.9241 10.9263 11.7538 10.8902 10.7469 12.7551

1 1.0860 0.0884 0.4774 2.8760 3.0318 2.8341 2.4145 1.5392 2.8065 3.3998

2 0.0679 0.0148 0.1767 0.8335 0.0809 0.9012 1.2707 0.2077 0.1950 0.4767

3 0.1100 0.0082 0.1570 0.3096 0.0509 0.8629 0.4699 0.1484 0.1315 0.3056

5 0.5369 0.0120 0.1482 0.2178 0.0415 0.8321 0.0115 0.1102 0.1018 0.2490

10 0.0491 0.0043 0.1386 0.1424 0.0303 0.5787 0.0357 0.0704 0.0692 0.1883
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6.2. Nonclassically damped system—aircraft wing

A simple aircraft wing clamped along wing root section, shown in Fig. 5(a), is considered. The Aminpour’s
shell element with 6 degrees of freedom per node is used. The model contains a total of 420 nodes, 316
elements, and 2520 degrees of freedom. Thus, the size of system matrices A and B in state space is
[5040� 5040], respectively. In this example, as shown in Fig. 5(b), the model is divided into two different parts,
which are wing rib and spar. They have different thickness and proportionality constant. The global structure
is divided into two substructures. Fig. 5(c) shows the result of selection of master degrees of freedom including
interface degrees of freedom. A total of 210 randomly distributed degrees of freedom are selected as master
degrees of freedom out of each substructure. This nonclassically damped eigenvalue problem is condensed to a
ratio of 8.3% from the full system. Table 6 represents the number of degrees of freedom and the size of
transformation matrices in full system and in each subsystem.

The results in Table 7 clearly indicate that all modal frequencies and damping ratios are converged. The
accuracy of the solutions is increased by making more iteration. After the ten iteration steps the first 20 modal
frequencies have relative errors less than 0.5787% as shown in Table 8.

7. Conclusion

An iterated IRS method combined with a substructuring scheme is presented for efficient eigenanalysis. The key
point of the present method is on the iterative update of the transformation matrix from the global degrees of
freedom to the selected master degrees of freedom in each substructure. In particular, the present method is
effectively applicable to the dynamic analysis for large structures even under the environment of limited computer
storage. Numerical examples for undamped and nonclassically damped structural problems demonstrated the
convergence and accuracy of the present method. In the present method, the reduced system is expressed as
the degrees of freedom of the finite element model including physical information. Thus it can be very useful in the
repeated analysis of dynamic problems such as vibration analysis and control, system identification and structural
optimization. The present algorithm is very efficient to the problem in two-dimensional configurations such as
plate and shell structures since this kind problem has relatively small number of interface degrees of freedom at the
interfaces between adjacent substructures. However, the present substructuring method is not so efficient for the
problem with a large number of degrees of freedom at the interface between substructures such as three-
dimensional solid problems. More research work is required to reduce the interface degrees of freedom without
using large-sized memory storage in the present substructuring reduction method.
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Appendix

From Eq. (30) it can be shown that the reduced model constructed by the substructuring scheme reproduces
the lower eigenvalues and their associated eigenvectors of the original system. The transformation matrix for
the substructuring is

T ¼

tð1Þ

Im

tð2Þ

2
64

3
75 (A.1)

And the eigenvector estimated by using the converged transformation matrix T is

U ¼

Uð1Þs

Um

Uð2Þs

2
64

3
75 ¼

tð1Þ

Im

tð2Þ

2
64

3
75Um ¼ TUm (A.2)

Since Um is an eigenvector of the reduced system

M�1R KRUm ¼ LmUm (A.3)

And the slave degrees of freedom field in each substructure can be expressed as

Uð1Þs ¼ tð1ÞUm ¼ � Kð1Þss

� ��1
Kð1Þsm þ Lm Kð1Þss

� ��1
Mð1Þsm þMð1Þss tð1Þ
� �h i

Um

Uð2Þs ¼ tð2ÞUm ¼ � Kð2Þss

� ��1
Kð2Þsm þ Lm Kð2Þss

� ��1
Mð2Þsm þMð2Þss tð2Þ
� �h i

Um (A.4)

In Eq. (A.4), premultiplying Kð1Þss and Kð2Þss in each equation

Kð1Þss Uð1Þs ¼ � Kð1ÞsmUm þ LsM
ð1Þ
smUm þ LsM

ð1Þ
ss Uð1Þs

Kð2Þss Uð2Þs ¼ � Kð2ÞsmUm þ LsM
ð2Þ
smUm þ LsM

ð2Þ
ss Uð2Þs (A.5)

Rearranging gives

Ls Mð1Þsm Mð1Þss þMð2Þss Mð2Þsm

h i Uð1Þs

Um

Uð2Þs

8><
>:

9>=
>; ¼ Kð1Þsm Kð1Þss þ Kð2Þss Kð2Þsm

h i Uð1Þs

Um

Uð2Þs

8><
>:

9>=
>; (A.6)

From Eq. (A.6), the slave eigenvalues and associated eigenvectors are obtained.
Since Lm is an eigenvalue of the reduced system with eigenvector Um

LTTMTUm ¼ Lm½ tð1Þ Im tð2Þ �M

Uð1Þs

Um

Uð2Þs

8><
>:

9>=
>; ¼ ½ tð1Þ Im tð2Þ �K

Uð1Þs

Um

Uð2Þs

8><
>:

9>=
>; ¼ LmT

TKTUm (A.7)

Multiplying out the above equation

Lm Mð1Þms Mð1Þmm þMð2Þmm Mð2Þms

h i Uð1Þs

Um

Uð2Þs

8><
>:

9>=
>; ¼ Kð1Þms Kð1Þmm þ Kð2Þmm Kð2Þms

h i Uð1Þs

Um

Uð2Þs

8><
>:

9>=
>; (A.8)
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Combining Eq. (A.6) with Eq. (A.8) gives

Lsþm

Mð1Þss Mð1Þsm

Mð1Þms Mmm Mð2Þms

Mð2Þsm Mð2Þss

2
664

3
775

Uð1Þs

Um

Uð2Þs

8>><
>>:

9>>=
>>; ¼

Kð1Þss Kð1Þsm

Kð1Þms Kmm Kð2Þms

Kð2Þsm Kð2Þss

2
664

3
775

Uð1Þs

Um

Uð2Þs

8>><
>>:

9>>=
>>;

¼ LMU ¼ KU (A.9)

From Eq. (A.9), we can easily demonstrate L is an eigenvalue of the full system associated eigenvector U. In
addition, the nonclassically damped system can also be derived in the same manner.
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